COMUNE DI SILLANO GIUNCUGNANO

PROVINCIA DI LUCCA

PROGETTO DI MANUTENZIONE STRADRDINARIA: RIFACIMENTO SOLAIO DI COPERTURA SEDE COMUNALE DI MAGLIANO

RELAZIONE SUI MATERIALI

PROGETTO ESECUTIVO

ELABORATO

No

ΔΔ

IL TECNICO: ING. CLAUDIO BALDUCCI

VIA EMILIA N°21

SILLANO GIUNCUGNANO (LU)

DATA:

DICEMBRE 2015

AGGIORNAMENTO:

GENNAIO 2016

TIMBRO E FIRME

RELAZIONE SUI MATERIALI

Sommario

1. NORMATIVA DI RIFERIMENTO	2
2. CALCESTRUZZO	2
3. ACCIAIO PER CEMENTO ARMATO	4
4. LEGNO	5
4.1. LEGNO (1/2)	5
4.2. LEGNO (2/2)	5
5. ACCIAIO DA CARPENTERIA METALLICA	5
6. ELEMENTI DI COLLEGAMENTO PER LE STRUTTURA IN LEGNO	6

1. NORMATIVA DI RIFERIMENTO

- Decreto Ministeriale 14 gennaio 2008 (Nuove Norme Tecniche per le Costruzioni)
- Circolare 2 Febbraio 2009 n. 617 (Nuova circolare delle norme tecniche per le costruzioni)

2. CALCESTRUZZO

Le strutture in c.a. saranno realizzate con calcestruzzo, conforme alla norma UNI EN 206-1: 2006 e norma UNI EN 11104: 2004, di classe **C25/30** N/mm² per il quale si hanno le seguenti proprietà e componenti:

Proprietà

Resistenza caratteristica su provini cubici	$R_{ck} = 30,00 \text{ N/mm}^2$
Resistenza caratteristica su provini cilindrici	$f_{ck} = 24,90 \text{ N/mm}^2$
Resistenza di calcolo a compressione	$f_{cd} = 14,11 \text{ N/mm}^2$
Resistenza massima a trazione	$f_{ctm} = 2,56 \text{ N/mm}^2$
Resistenza di calcolo a trazione	$f_{ctd} = 1,71 \text{ N/mm}^2$
Modulo Elastico	$E_{cm} = 31.418 \text{ N/mm}^2$
Coefficiente di dilatazione termica	α = 10 * 10 ⁻⁶ per °C ⁻¹
Coefficiente parziale relativo al cls	$\gamma c = 1.50$
Coefficiente di <i>Poisson</i>	v = 0.20
Densità	ρ = 2.400 daN/m ³

Tipo di controllo A: *su provini cilindrici*

Classe di consistenza del getto (abbassamento del cono)

S4, S5

Classe di esposizione (asciutto o perman. bagnato)

XC1

Dimensione massima inerti (elevazione- fondazione) 0-15 mm

Copriferro minimo platee di fondazione e muri di sostegno scannafosso 30 mm Copriferro minimo per travi in elevazione e cordoli di piano e copertura 25 mm

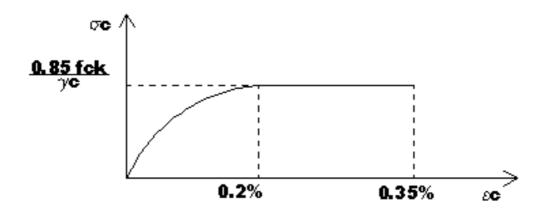
Componenti

LEGANTI: I leganti impiegati nell'opera in progetto, sono quelli previsti sono quelli previsti dalle disposizioni vigenti in materia (Legge 26-05-1965 e norme armonizzate della serie UNI EN 197), dotati di attestato di conformità ai sensi delle norme UNI EN 197-1 ed UNI EN 197-2. In presenza di ambienti chimicamente aggressivi si fa riferimento ai cementi previsti dalle norme UNI 9156 (cementi resistenti ai solfati) e UNI 9606 (cementi resistenti al dilavamento della calce).

AGGREGATI: La sabbia deve essere viva, con grani assortiti in grossezza da 0 a 3 mm, non proveniente da rocce in decomposizione, scricchiolante alla mano, pulita, priva di materie

organiche, melmose, terrose e di salsedine.

La ghiaia deve contenere elementi assortiti, di dimensioni fino a 15 mm, resistenti e non gelivi, non friabili, scevri di sostanze estranee, terra e salsedine.


Le ghiaie sporche vanno accuratamente lavate. Anche il pietrisco proveniente da rocce compatte, non gessose né gelive, dovrà essere privo di impurità od elementi in decomposizione.

AGGIUNTE: Nei calcestruzzi è ammesso l'impiego di aggiunte, in particolare di ceneri volanti, loppe granulate d'altoforno e fumi di silice, purché non ne vengano modificate negativamente le caratteristiche prestazionali.

ADDITIVI: Gli additivi devono essere conformi alla norma europea armonizzata UNI EN 934-2.

ACQUA DI IMPASTO: L'acqua da utilizzare per gli impasti dovrà essere limpida, priva di sali in percentuale dannosa e non aggressiva (conforme alla norma UNI EN 1008: 2003).

Il diagramma costitutivo tensioni-deformazioni per il calcestruzzo, è stato ipotizzato del tipo *parabola-rettangolo*, trascurando qualunque resistenza a trazione. L' andamento è del seguente grafico:

dove:

 $\varepsilon_{c2} = 0.20\%$

 $\varepsilon_{cu} = 0.35\%$

 $\gamma_{c} = 1.50$

3. ACCIAIO PER CEMENTO ARMATO

Per le opere in cemento armato della fondazione sarà utilizzato acciaio saldabile e qualificato, tipo **B450C** per il quale si hanno le seguenti proprietà:

Tensione caratteristica di snervamento $f_{vk} = 450 \text{ N/mm}^2$

Tensione caratteristica di rottura $f_{tk} = 540 \text{ N/mm}^2$

Resistenza di calcolo $f_{vd} = 391 \text{ N/mm}^2$

Resistenza tangenziale di aderenza di calcolo $f_{bd} = 3,84 \text{ N/mm}^2$

Modulo Elastico $E_S = 206.000 \text{ N/mm}^2$

Coefficiente parziale relativo all' acciaio $\gamma_S = 1.15$


Coefficiente di *Poisson* v = 0.30

Densità $\rho = 7.850 \text{ daN/m}^3$

n = 15

All' atto della posa in opera gli acciai devono presentarsi privi di ossidazione, corrosione, difetti superficiali visibili e pieghe. E' tollerata una ossidazione che scompaia totalmente mediante sfregamento con un panno asciutto. Non è ammessa in cantiere alcuna operazione di raddrizzamento.

Il diagramma costitutivo tensioni- deformazioni per gli acciai da armatura è simmetrico a trazione e compressione ed è ipotizzato di tipo *elastico-perfettamente plastico indefinito,* con andamento riportato di seguito:

dove:

 $\gamma_{\rm s} = 1.15$

4. LEGNO

4.1. LEGNO (1/2)

Le travi principali saranno realizzati, in modo conforme alla norma armonizzata UNI EN 11035, classe legname **GL24c** (Norma UNI EN1194/2000 "*Strutture in legno lamellare incollato- Classi di resistenza e determinazione dei valori caratteristici"*, per il quale si hanno le seguenti proprietà:

Resistenza caratteristica a flessione $f_{mk} = 240 \text{ daN/cm}^2$ Resistenza caratteristica a taglio $f_{vk} = 22 \text{ daN/cm}^2$ Modulo Elastico $E = 116.000 \text{ daN/cm}^2$ Peso $\rho = 380 \text{ daN/m}^2$

4.2. LEGNO (2/2)

I tavolati dei solai saranno realizzati in conformità alla norma armonizzata UNI EN 338, classe legname **C24**, per il quale si hanno le sequenti proprietà:

Resistenza caratteristica a flessione $f_{mk} = 240 \text{ daN/cm}^2$ Resistenza caratteristica a taglio $f_{vk} = 25 \text{ daN/cm}^2$ Modulo Elastico $E = 110.000 \text{ daN/cm}^2$ Peso $\rho = 500 \text{ daN/m}^2$

5. ACCIAIO DA CARPENTERIA METALLICA

Le strutture in acciaio per opere di carpenteria, piastre e squadrette, saranno realizzate con acciaio da carpenteria, conforme alla norma armonizzata della serie UNI EN 10025-2 (per i laminati), tipo **\$235** per il quale si hanno le seguenti proprietà:

Tensione caratteristica di snervamento $f_{yk} = 235 \text{ N/mm}^2$ Tensione caratteristica di rottura $f_{tk} = 360 \text{ N/mm}^2$ Modulo Elastico $E = 210.000 \text{ N/mm}^2$

- Modulo di elasticità trasversale $G = E / [2*(1 + \cdot)] N/mm^2$

- Coefficiente di *Poisson* v = 0.30

- Coefficiente di espansione termica lineare α = 12 * 10⁻⁶ per °C⁻¹

(per temperature fino a 100 °C)

- Densità ρ = 7.850 daN/m³

6. ELEMENTI DI COLLEGAMENTO PER LE STRUTTURA IN LEGNO

Si utilizzano come elementi di connessione i seguenti:

- Staffe metalliche,
- Chiodi Anker 6x60 fu>600 fu> 630 MPa
- Viti da legno a tutto filetto fu> 600 MPa
- Viti da legno autofilettanti fu> 600 MPa
- Bulloni classe 8.8 fu> 800 MPa

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.